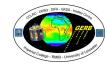

Validation and Homogenisation of Cloud Properties Retrievals for RMIB GERB/SEVIRI Scene Identification

Alessandro Ipe


gerb@oma.be

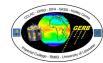
Overview

- 1. Introduction
- 2. Motivations
- 3. Cloud Properties Retrieval Algorightms
- 4. Analysis of the Retrievals
- 5. Homogenisation of the Cloud Optical Depths
- 6. Validation of the Homogenized Retrievals
- 7. Future Works

1. Introduction

GERB angular conversion, i.e. TOA radiance—to—flux conversions, based on CERES ADMs for solar radiation.

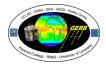
⇒ For best flux estimation, CERES and GERB SIs need to be as close as possible!


According to CERES ADMs, minimal features for RMIB GERB/SEVIRI SI are:

cloud phase

• surface type

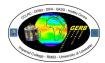
BUT, CERES and GERB cloud identifications are based on different algorithms and radiative models \rightarrow discrepancies between both cloud products (CPs).


⇒ Need some corrective scheme to map GERB on CERES CPs.

2. Motivations

- 1. Detection of possible angular bias in the GERB cloud properties retrieval algorithms.
- 2. Development of some corrective scheme to map Instrument–1 on Instrument–2 CPs.

3. Cloud Properties Retrieval Algorithms

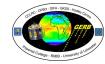

Cloud optical depth au

- ullet Simulated radiances L for ocean, vegetation and bare—soil surfaces, ice and water clouds with several au using SBDART RT code.
- Parametrization (A, B, χ, τ_0) of empirical relation between mean cloud amount C and τ (sigmoid in $\log \tau$) by LSF using those simulated L

$$C \triangleq \frac{L(\tau) - L(0)}{L(128) - L(0)} = \frac{A}{B + \left(\frac{\tau_0}{\tau}\right)^{1/\chi}}$$
(1)

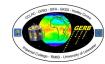
where all quantities except au are $(\theta_0, \theta, \varphi)$ and surface dependent.

• Estimation of τ with measured radiances $L(\tau)$, L(0), simulated L(128) and parameters associated to scene geometry through inversion of (1).

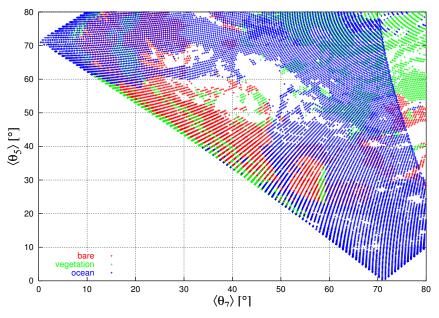


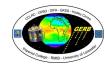
3. Cloud Properties Retrieval Algorithms

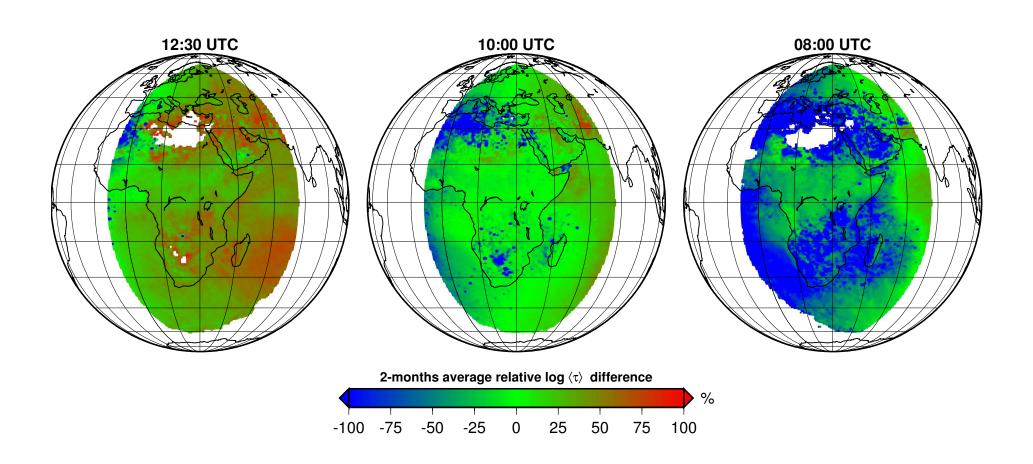
Cloud fraction f

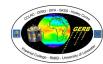

- Defined on some footprint, i.e. a set of pixels.
- Relative fraction of *cloudy* pixels within the footprint.
- Cloudy pixel if its $\tau > 1$ (this limit leads to approx. half of cloudy pixels in MS7 & 5 FOVs).

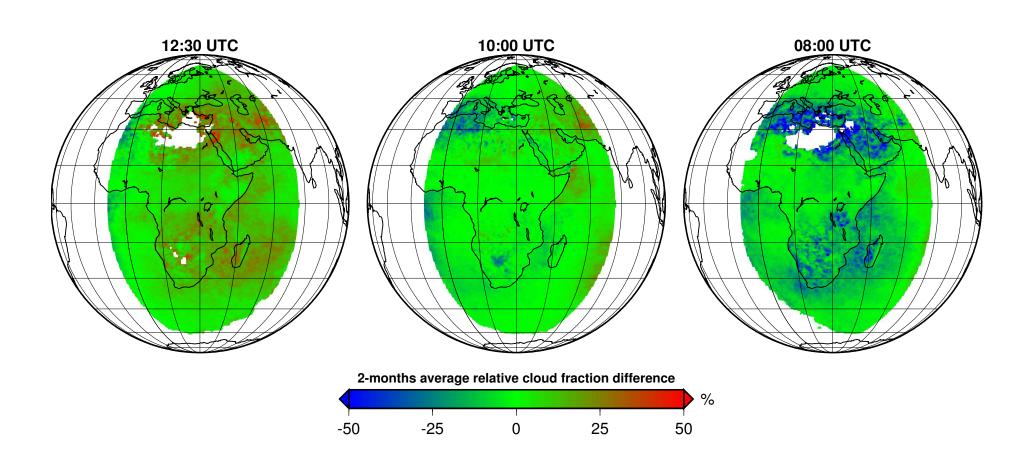
4. Data Description

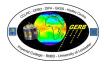

- visible MS7 and MS5 images from July+August 1998 at 12:30, 10:00 and 8:00 UTC.
- Intersection of both FOVs provides identical scenes with different geometries $(\theta_0, \theta_7, \varphi_7)$ & $(\theta_0, \theta_5, \varphi_5)$.
- To avoid cloud shadowing and cloud parallaxes sensitivity in FOVs \Longrightarrow footprint-basis mean comparisons with nearly identical projected sizes on surface ($2500\,\mathrm{km}^2$ and $50\times50\,\mathrm{km}^2$ at $\pm45^{\mathrm{o}}$ of latitude)
- For each footprint and satellite, we estimate $(\langle \theta_0 \rangle, \langle \theta_i \rangle, \langle \varphi_i \rangle)$, mean surface, f_i , $\langle \tau_i \rangle$ where i = 5, 7.

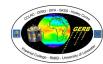


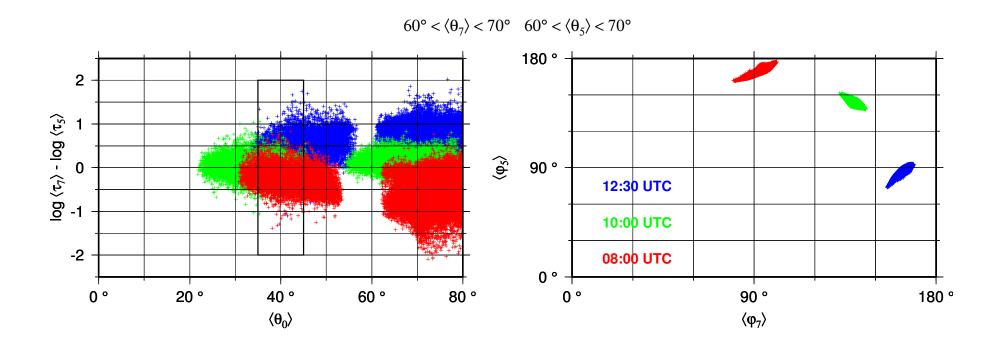

4. Data description

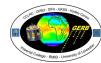


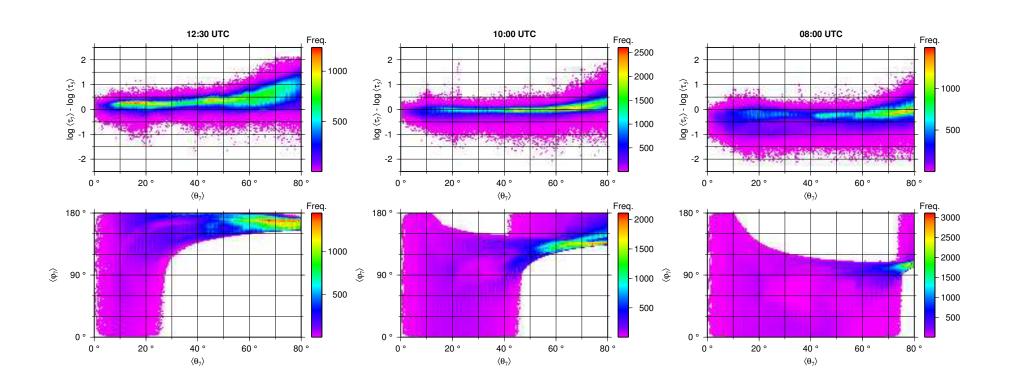


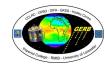




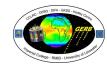



- \bullet τ variations according to surface type resolved by our algorithm.
- \triangleright Sensitivity of τ retrievals according to all 3 angles $(\theta_0, \theta, \varphi)$?
- Due to the *cloudy* pixel boolean test, cloud fraction retrievals are less affected by scene geometry angles.


Sensitivity of τ retrievals



Sensitivity of τ retrievals

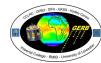


Sensitivity of τ **retrievals**

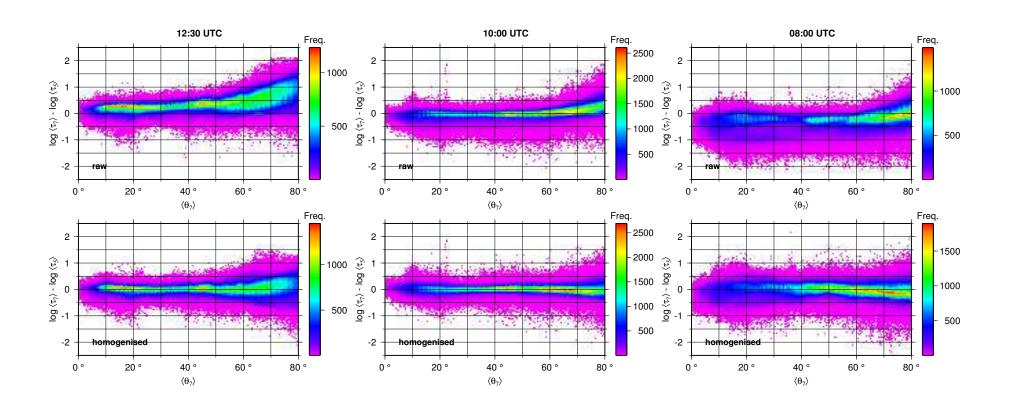
 τ retrieval errors are dependent of (θ, φ) (SBDART = plane-parallel code).

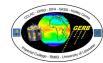
BUT, due to satellites configuration, each MS SLOT has a limited φ variation.

 \Longrightarrow Homogenisation according to θ will be performed for each SLOT separately!

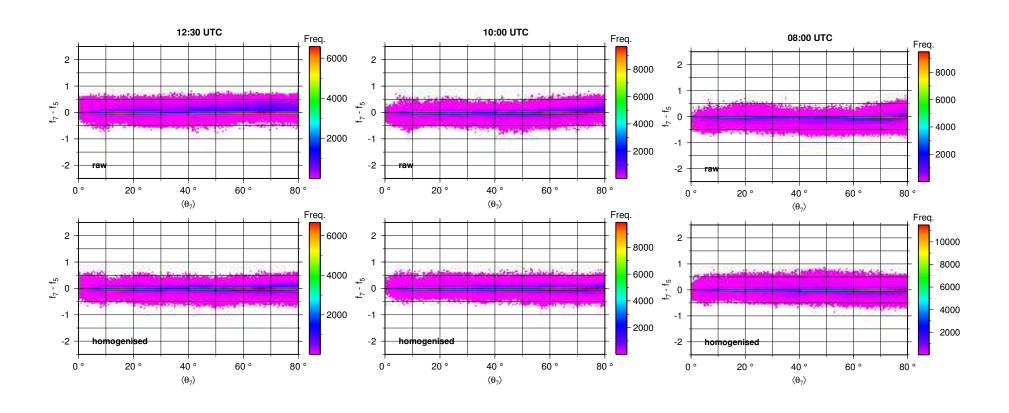


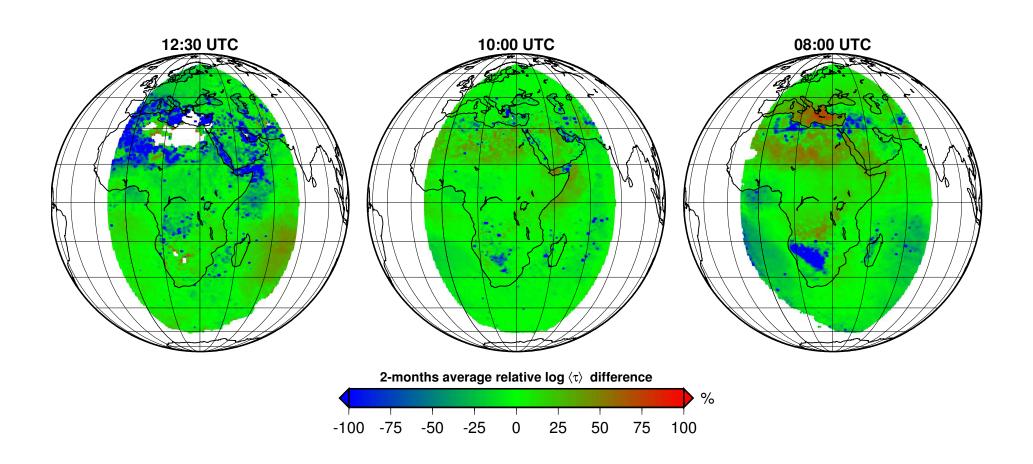
7. Homogenisation of the Cloud Optical Depths

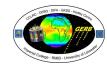

- 1. Define a reference point which fixes values of one satellite compared to the other:
 - \triangleright Selection of footprints with $60^{\rm o} \le \langle \theta_5 \rangle \le 70^{\rm o}$
 - $\Longrightarrow \langle \tau_5 \rangle$ retrievals independent of $\langle \theta_5 \rangle$ due its restricted variation.
 - \Longrightarrow scatter plot entirely explained by the $\langle \theta_7 \rangle$ dependency of $\langle \tau_7 \rangle$.
- 2. Modelize this dependency by LSF: $\log \langle \tau_7 \rangle \log \langle \tau_5 \rangle = \mathcal{P}_3(\langle \theta_7 \rangle)$.
- 3. MS5 is the reference, thus $\langle \tau_5 \rangle \to \langle \tau \rangle$ can be seen as the MS7 homogenized value relative to the selected $\langle \theta_5 \rangle$ range:

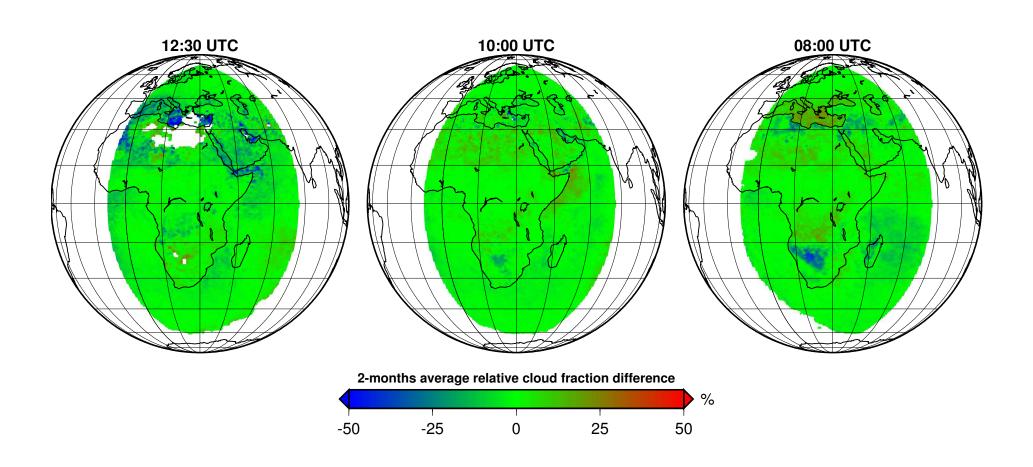

$$\langle \tau \rangle = \langle \tau_7 \rangle \cdot 10^{-\mathcal{P}_3(\langle \theta_7 \rangle)}.$$

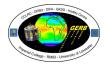
Similar results hold when choosing MS7 as reference ($60^{\rm o} \le \langle \theta_7 \rangle \le 70^{\rm o}$).

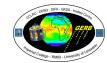












- \bullet τ angular dependency significantly decreased.
- No more over/under-estimation of $\langle \tau_7 \rangle$ compared to $\langle \tau_5 \rangle$, as shown in $f_7 f_5$ plot.
- Decrease of the scattering in both comparison plots.

Fitting	$\log\langle au_7 \rangle - \log\langle au_5 \rangle$		$f_7 - f_5$	
laws	hom.	raw	hom.	raw
constant	0.2353	0.3343	0.0958	0.1281
linear	0.2334	0.2707	0.0957	0.1258
quadratic	0.2318	0.2601	0.0955	0.1257
cubic	0.2317	0.2587	0.0954	0.1257

9. Future Works

- Homogenised values are SLOT dependent $(f(\varphi))$:
 - Need one more corrective step.
 - \triangleright Test if φ dependence is decreased with use of non–Lambertian surfaces in RTM.
- Need to understand the source of scattering:
 - Detection of calibration errors by building thick—cloud radiance fields from MS7 & MS5 images and comparing them.
 - \triangleright Use of these experimental $L(\tau=128)$ to compute mean cloud amount $\Longrightarrow C$ computed using only measured radiances.
 - \triangleright Apply a phase retrieval scheme to cloudy pixels and use the associated SBDART phase thick-cloud radiance to compute C.